Hypothesis Testing with Classifier Systems

نویسنده

  • Flavio Baronti
چکیده

This thesis presents a new ML algorithm, HCS, taking inspiration from Learning Classifier Systems, Decision Trees and Statistical Hypothesis Testing, aimed at providing clearly understandable models of medical datasets. Analysis of medical datasets has some specific requirements not always fulfilled by standard Machine Learning methods. In particular, heterogeneous and missing data must be tolerated, the results should be easily interpretable. Moreover, often the combination of two or more attributes leads to non-linear effects not detectable for each attribute on its own. Although it has been designed specifically for medical datasets, HCS can be applied to a broad range of data types, making it suitable for many domains. We describe the details of the algorithm, and test its effectiveness on five real-world datasets.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TESTING STATISTICAL HYPOTHESES UNDER FUZZY DATA AND BASED ON A NEW SIGNED DISTANCE

This paper deals with the problem of testing statisticalhypotheses when the available data are fuzzy. In this approach, wefirst obtain a fuzzy test statistic based on fuzzy data, and then,based on a new signed distance between fuzzy numbers, we introducea new decision rule to accept/reject the hypothesis of interest.The proposed approach is investigated for two cases: the casewithout nuisance p...

متن کامل

HYPOTHESIS TESTING FOR AN EXCHANGEABLE NORMAL DISTRIBUTION

Consider an exchangeable normal vector with parameters ????2, and ?. On the basis of a vector observation some tests about these parameters are found and their properties are discussed. A simulation study for these tests and a few nonparametric tests are presented. Some advantages and disadvantages of these tests are discussed and a few applications are given.

متن کامل

A NEURO-FUZZY GRAPHIC OBJECT CLASSIFIER WITH MODIFIED DISTANCE MEASURE ESTIMATOR

The paper analyses issues leading to errors in graphic object classifiers. Thedistance measures suggested in literature and used as a basis in traditional, fuzzy, andNeuro-Fuzzy classifiers are found to be not suitable for classification of non-stylized orfuzzy objects in which the features of classes are much more difficult to recognize becauseof significant uncertainties in their location and...

متن کامل

LINEAR HYPOTHESIS TESTING USING DLR METRIC

Several practical problems of hypotheses testing can be under a general linear model analysis of variance which would be examined. In analysis of variance, when the response random variable Y , has linear relationship with several random variables X, another important model as analysis of covariance can be used. In this paper, assuming that Y is fuzzy and using DLR metric, a method for testing ...

متن کامل

Acceptance sampling for attributes via hypothesis testing and the hypergeometric distribution

This paper questions some aspects of attribute acceptance sampling in light of the original concepts of hypothesis testing from Neyman and Pearson (NP). Attribute acceptance sampling in industry, as developed by Dodge and Romig (DR), generally follows the international standards of ISO 2859, and similarly the Brazilian standards NBR 5425 to NBR 5427 and the United States Standards ANSI/ASQC Z1....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007